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Percolation with long-range correlations for epidemic spreading
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A percolation model with long-range correlations was introduced to investigate the phenomena of epidemic
spreading by Monte Carlo simulations. The correlation exporernd pathogenic ratiG correspond to
different spreading methods and pathogenicity of variant epidemics. As the correlation changes from a weak
one to a strong one, the patterns change from site percolation to Eden cluster when pathogesiclrabo
Leath percolation cluster whesi<1. Corresponding to change of patterns, the fractal dimension increases up
to space dimension. The critical behavior in epidemic spreading has been examined based on the model. It is
found that correlation has a great influence on the threshold of spreading percolation.

PACS numbg(s): 87.18.Bb, 61.43.Hv, 64.60.Cn

[. INTRODUCTION Moore and Newman studied the epidemics in small-world
networks by a percolation modgl7]. Their study shows,

During the last two decades, fractal growth and aggregathat epidemics’ behavior is strongly influenced by the net-
tion phenomena have attracted considerable inté¢fess]. works.
The fractal structure of aggregates strongly depends on the In this paper, we introduced a percolation with long-range
dynamics of the growth process. Many experiments, theocorrelation to study epidemic spreading. In the model,
retic analysis, and computer simulations have been carriedPreading phenomena can occur through spatial distance, i.e.,
out to investigate the relationships between the geometry ar@pidemics can spread to the sites that are not adjacent to the
mechanism. Great efforts have been directed to deve|opinguster of sick individuals. Our results will be useful to de-
models for fractal growth and the aggregation process. Ther&cribe and understand the behavior of variant epidemic
are three basic models of fractal growth: particle-cluster agspreading.
gregation (PCA) [4,5], cluster-cluster aggregatio(CCA)

[6,7], and percolatioh3]. Almost five decades ago, the con- Il. MODEL AND SIMULATIONS
cept of percolation was introduced to study the gelation pro- ) )
cess and the spreading of fluids in random mé@jaThen, Monte Carlo(MC) simulations have been used for the

many investigations were performed on the percolatiorPresenf‘ model. In simulations, we consider a square Iattice.
model and its application8—11]. The percolation model is Each site can be empty or occupied by two types of particles,
useful for describing some physical, chemical, and biologicafvhich are called sickS) and immune(l) ones. At timet
processes, such as the spreading of epidemics and forestl, anS particle is placed at the origin. An empty site
fires, the gelation process, the invasion of water into oil in(healthy particlg in the square lattice can be chosen ran-
porous media, and other related probleiha—17. domly and converted into afi particle with probabilitysP,
Eden presented a model for the spreading of bacterig" an | particle with probability (1-s)P. Here, s is the
colonies on a homogeneous substrate that was representedfgthogenic ratio that stands for the pathogenicity of viruses
a lattice of site§18,19. In each growth step, one of the open OF germs of epidemics? is the infected probability, which
sites at the perimeter of the cluster is chosen randomly anf2n be deduced as follows. In the percolation model with
occupied. Eden cluster is compact and has a self-affine frodPng-range correlations, the correlation probabifiy, with
[1]. Once the occupied probability is less than 1, Eden modevhich a healthy particle is infected by thth S particle, is
changes into Leath percolatidB], which has been used to €xpressed as
study epidemics, forest fire spreading, and similar phenom-
ena[3,8,14,17. pi= 1/, 1)
Bundeet al. have introduced a spreading percolation in
which epidemics spread by “butterfly[14]. The model is wherer; is the distance from the empty siteitih S site and
interesting for the spatial correlation that is involved. But the(@=0) is the correlation exponent that relates to the ways
correlation is limited for the “butterfly” and occupation can Of viruses or germs spreading. For the chosen empty site, the
only occur at the sites nearest to those already in cluster, i.éhfected probability by theth S particle isp;, so the unin-
the cluster can only grow “shell by shell.” Recently, Makse fected probability is - p; . Furthermore, considering the ef-
et al. presented a correlated percolation to model urbarfects of all theS particles on a chosen particle, the total
growth [15]. Their results agreed well with the population infected probabilityP takes the form
distribution of Berlin in different periods. Very recently,
P=p;+(1-py)p2+(1-p)(1=pz)pst - +(1—py)
N
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FIG. 1. Distribution of S particles for the percolation model with ~ FIG. 2. Distribution of S and | particles for the percolation
long-range correlationd\=2500, s=1, «=1.5 (a), 2.5 (b), and model with Iopg-range correlations. Full squaBparticles; open
1000(c). L=500 (a), 500 (b), and 100(c). square,| particles. s=p;, a=1.5, (a) 2.5 (b), and 1000(c).

L =200 (a), 200 (b), and 100(c).
whereN is the number of particles in existence. Choose an
empty site, calculate its infected probabilRy and convertit  sponds to the weakly correlated case. But for other kinds of
to an S with probability P or | particle with probability 1  epidemics that are mainly transmitted by contacy., spread
—P. Repeat this process until the expected growth scale ipy body fluid, i.e., through sweat, food, sexual contact, and
attained or the epidemics cannot continue to spread. so on, the diseases can only spread through a very short

The pathogenic ratie and correlation exponent can  djstance from ar§ site to an empty one, which is relevant to
describe variety of types of epidemic spreading. There argne strongly correlated case. In this case, the sick particles
two limits in the mod(_al: One is weak correlation Im_nt, i.e., are distributed thickly.
a=0. In this case, this model degenerates to the site perco- gqing one step further, we investigated the influence of
lation in which the occupied fraction corresponds to the Oc'pathogenic ratics on the distribution of sick and immune
cupied probability[3]. The other one is strong correlation particles. Figure 2 gives the patterns of simulations vgith

limit, i.e., a—. In this limit case, the Eden cluster can be " . . .
: o : . =p, for varianta. p. is the threshold of 2D percolation on
obtained withs=1, or the Leath percolation cluster with .
s<1 the square lattice and has the value of 0.593For smalle,
’ the system presents a weakly correlated percolation. In this
case Sandl particles randomly lie on the 2D latti¢see Fig.
IIl. RESULTS AND DISCUSSION 2(a)], and the distribution of particles is similar to that in

Numerical simulations are performed on a finite system of i9- 1(8). The cluster consisting @ and| particles becomes
area ofL X L. The length of square particles is chosen to bedenser as the correlation exponentrises. The simulation
the unit of length. The occupied fraction is given lpy ~ With s=p; ande=2.5 is shown in Fig. @). The cluster of
=N/L?. In the simulation, the attention is focused on the SSparticles in Fig. 2b) is a little sparser than that in Fig(t)
particles cluster, i.e., the distribution of S particless cho- (s=1 anda=2.5). Figure 2c) presents the pattern with
sen to be two values: 200 and 500. The results are almost thep, and «=1000. Comparing with Fig. (£) (s=1 and«

same.¢ is taken as 0.01 in the simulations. =1000), the cluster is sparser. In this case, an empty nearest
site to the cluster ofs particles is randomly chosen and is
A. Morphology converted to art particle with probabilitys or | one with

(1—s), which is the Leath method of generating single per-
colation [3]. Such a cluster is just the Leath percolation,
which also has a threshold probabilify,. If s<p., the
Leath method can only produce a finite single percolation
cluster[3]. For the strong correlation limit, ne® or | par-
ticles grow on the edge of the cluster $fparticles withP
=1, and the converted probabilities $and| particles ares

The morphologies of the numerical simulations vary with
the parameters and «. Figure 1 shows the simulation pat-
terns of epidemic spreading with the pathogenic ratiol
for several correlation exponents. In the case of the
weakly correlated percolation i.ey, is small, allS particles
prefer to be dispersed randomly on the 2D wdidee Fig.
1(a@)]. It is a site percolatiqn in Which occupied. the fraction j 4 1 s, respectively. It follows from this, i§<p., the
correspond_s to the occup|eq probabilig]. As INCreases,  anidemics cannot spread infinitely for the very strong corre-
the correlation between particles gets strong and the partlclq tion, i.e., the cluster o particles is finite in scale. It can be

are not dispersed randomly any more. They are apt to form 8cen that the pathogenic raiplays an important role in the
dense pattern at some localitigs shown in Fig. )]. If « spreading of diseases.

is large enough, the correlation becomes very strong. In this
case, we geP=1 (whenr=1) and O(whenr>1) from
Egs.(1) and(2). It means that thé& particles can only grow

on the nearest sites to the clusterybarticles, which is just The static(geometrig property is expressed by fractal di-
the growth rule of the Eden modgl,2,19,2Q Therefore, the mensionD;. The fractal dimension of a spreading percola-
cluster is a very compact one and has a self-affine fibht tion system can be calculated by the box-counting method
that is a reproduction of the Eden modske Fig. 1c)].  that was used to study random sets in a box by Hamburger
From the above, we generalize a conclusion. For the kind ot al. recently[20]. It was found, for a low occupied fraction,
epidemics that are very easy to spréadj., spread by windls apparent fractal behavior was observed between physically
the disease can be transmitted through long distance, and thelevant cutoffs. The lower cutoff, is presented by the
distribution of sick individuals is dispersive, which corre- length of particles. The upper cutaff is given by the aver-

B. Fractal dimension
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FIG. 3. The fractal dimensioD of the cluster consisting & FIG. 4. The threshold, of pathogenic ratioversusthe correla-
particles as functions of the correlation exponenfor spreading tion exponent« for spreading percolations,~0.593 when
percolation. Pathogenic ratis=1 (full squarg, and 0.593(open a=1000. ¢

circle).

becomes close tp.. There is a sharp step in thg—«a
curve too. The relation of; to « is easy to understand. For
the limit of strong correlation, our model reduces to Leath
L X X ) percolation that has a threshadd [3]. If s<p., the cluster
sisting of S particles as functions of the correlathn expon_entof S particles can only grow to a finite size. Thus, in this
a for pathogenic ratios=1 and 0.593, respectively. It iS 5565 . . For the weak correlation limit, the particles
found that, witha rising from O to infinite, Dy increases  can pe randomly transmitted through a very long distance. It
from 0.72 to 1.93, and a sharp step appears-a2. We will g ey difficult to prevent the epidemics from spreading, and
show below that the behavior @; with « is reasonable. e can expect tha,—0. Whena changes from 0 to a large
First, we check the case of the large Whena—, which \ae s_ increases from 0 tp,. These expectations agree
corresponds to the limit of strong correlation,s#1, our \ye|| with the results of our simulations. From the above, for
model reduces to the much-studied Eden model in wbigh  gifferent epidemics, the threshold differs greatly for the vari-
is close to 2(2 is the space dimensipil1,2,19; if s=p.  ant spreading ways. For the diseases spreading by touch
=0.593, our model reduces to the Leath percolation on thestrong correlatio)) the threshold is large and it is not too
thresholdp, in which D~91/48[3,14]. These results are in gjfficult to control the disease spreading. But for the diseases
good agreement with our simulation results93 and 1.88  that can be transmitted through long distantesak corre-
Then we discuss the case of smallWhena=0, our model  |ation), the spreading phenomena is very difficult to control.
reduces to the site percolation whose fractal dimension is |t appears that in Figs. 3 and 4, there is a sharp step at the
related to occupied fractios [3,20. Whene is small,D¢is  point a.~2 for D;— a ands,— a curves.a, is the transition

age gap between adjacent partic[@8]. The calculations
below were completed by the box-counting method.
Figure 3 plots the fractal dimensid@y of the cluster con-

small too. The simulation valug®.72 is reasonable. value, which can be deduced using a simple analysis. We
consider the growth probabiliti?4 of S particles at the sites
C. Critical behavior in epidemic spreading whose distance from the near&particle are larger than a
As described in Sec. Il A, in the case of the strong cor-Certain valued. ThenPy can be given by
relation limit («—0), if pathogenic ratios<p., the epi- o o
demics cannot spread infinitely, i.e., it is the crltlcal_ phenom- Py= Z sp(r)/ 2 sp(r). ©)
ena and the threshols.=p.. Does thresholds, exist for r=d r=1

other cases of nonzero variant correlation exporeht o ) ] .

To answer this question, we consider the epidemid/SiNg mtegralszmstsad %f summation approximately, @J.
spreading over the range<Qv<. It is supposed that, if the becomeq=(r="|q)/(r="*|7). Thusz,ias a rough estimate,
growth timeAt of an S particle is longer than 20t (At is  Pa~1 for the rangea<2 and IDd%dz_ “wforthexrangea
the mean growth time of previou8 particles, the disease 2. For the caser=2, Pg=lim__ r* [g/r*"*[{=1. ac
cannot spread any longer. The supposition is based on the2 s the transition point from a random dispersed distribu-
fact that the life-span of viruses and germs are finite. Tation to a compact one of particles. The distribution of par-
check the effect oAt ons;, two simulations with different ticles is reflected by the fractal dimension. So the sharp step
At (=20At and 4Q\t) have been done. Obtained values ofappears atv~2 in the D;— « curve. Analogously, we can
s, are almost the same. This shows that the supposition isxplain the behavior o, in Fig. 4. Whena<2, the system
reasonable. belongs to the universality class of a random graph with the

Based on this assumption, the numerical simulations wereonstant probability of a given pair of sites being connected.
performed and the results are shown in Fig. 4. It is foundn this case, thé& particles are dispersed everywhere and the
that, whenae<2, s. is close to 0, and whea is very larges, S particles continue to produce ne® particles. Thus the
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system grows infinitely and,=0. Whena>2, we explain  different diseases spread. The critical behavior in spreading
the same universality class at the square lattice, since mophenomena was discussed based on the model. It may be
connections are local. The model can also be performed in aseful to control epidemic spreading and describe similar
d dimension lattice. Similar results can be obtained. Morespreading phenomena.
generally,a.=d.
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