
PHYSICAL REVIEW E DECEMBER 2000VOLUME 62, NUMBER 6
Percolation with long-range correlations for epidemic spreading
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A percolation model with long-range correlations was introduced to investigate the phenomena of epidemic
spreading by Monte Carlo simulations. The correlation exponenta and pathogenic ratios correspond to
different spreading methods and pathogenicity of variant epidemics. As the correlation changes from a weak
one to a strong one, the patterns change from site percolation to Eden cluster when pathogenic ratios51, or
Leath percolation cluster whens,1. Corresponding to change of patterns, the fractal dimension increases up
to space dimension. The critical behavior in epidemic spreading has been examined based on the model. It is
found that correlation has a great influence on the threshold of spreading percolation.

PACS number~s!: 87.18.Bb, 61.43.Hv, 64.60.Cn
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I. INTRODUCTION

During the last two decades, fractal growth and aggre
tion phenomena have attracted considerable interest@1–3#.
The fractal structure of aggregates strongly depends on
dynamics of the growth process. Many experiments, th
retic analysis, and computer simulations have been car
out to investigate the relationships between the geometry
mechanism. Great efforts have been directed to develo
models for fractal growth and the aggregation process. Th
are three basic models of fractal growth: particle-cluster
gregation ~PCA! @4,5#, cluster-cluster aggregation~CCA!
@6,7#, and percolation@3#. Almost five decades ago, the co
cept of percolation was introduced to study the gelation p
cess and the spreading of fluids in random media@3#. Then,
many investigations were performed on the percolat
model and its applications@8–11#. The percolation model is
useful for describing some physical, chemical, and biolog
processes, such as the spreading of epidemics and f
fires, the gelation process, the invasion of water into oil
porous media, and other related problems@12–17#.

Eden presented a model for the spreading of bacte
colonies on a homogeneous substrate that was represent
a lattice of sites@18,19#. In each growth step, one of the ope
sites at the perimeter of the cluster is chosen randomly
occupied. Eden cluster is compact and has a self-affine f
@1#. Once the occupied probability is less than 1, Eden mo
changes into Leath percolation@3#, which has been used t
study epidemics, forest fire spreading, and similar phen
ena@3,8,14,17#.

Bunde et al. have introduced a spreading percolation
which epidemics spread by ‘‘butterfly’’@14#. The model is
interesting for the spatial correlation that is involved. But t
correlation is limited for the ‘‘butterfly’’ and occupation ca
only occur at the sites nearest to those already in cluster,
the cluster can only grow ‘‘shell by shell.’’ Recently, Maks
et al. presented a correlated percolation to model urb
growth @15#. Their results agreed well with the populatio
distribution of Berlin in different periods. Very recently
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Moore and Newman studied the epidemics in small-wo
networks by a percolation model@17#. Their study shows,
that epidemics’ behavior is strongly influenced by the n
works.

In this paper, we introduced a percolation with long-ran
correlation to study epidemic spreading. In the mod
spreading phenomena can occur through spatial distance
epidemics can spread to the sites that are not adjacent to
cluster of sick individuals. Our results will be useful to d
scribe and understand the behavior of variant epide
spreading.

II. MODEL AND SIMULATIONS

Monte Carlo ~MC! simulations have been used for th
present model. In simulations, we consider a square latt
Each site can be empty or occupied by two types of partic
which are called sick~S! and immune~I! ones. At timet
51, an S particle is placed at the origin. An empty sit
~healthy particle! in the square lattice can be chosen ra
domly and converted into anS particle with probabilitysP,
or an I particle with probability (12s)P. Here, s is the
pathogenic ratio that stands for the pathogenicity of viru
or germs of epidemics.P is the infected probability, which
can be deduced as follows. In the percolation model w
long-range correlations, the correlation probabilitypi , with
which a healthy particle is infected by thei th S particle, is
expressed as

pi51/r i
a , ~1!

wherer i is the distance from the empty site toi th Ssite and
a(a>0) is the correlation exponent that relates to the wa
of viruses or germs spreading. For the chosen empty site
infected probability by thei th S particle ispi , so the unin-
fected probability is 12pi . Furthermore, considering the e
fects of all theS particles on a chosen particle, the tot
infected probabilityP takes the form

P5p11~12p1!p21~12p1!~12p2!p31•••1~12p1!

3~12p2! . . . ~12pN21!pN512)
i 51

N

~12pi !, ~2!d-
8409 ©2000 The American Physical Society
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whereN is the number ofSparticles in existence. Choose a
empty site, calculate its infected probabilityP, and convert it
to an S with probability P or I particle with probability 1
2P. Repeat this process until the expected growth scal
attained or the epidemics cannot continue to spread.

The pathogenic ratios and correlation exponenta can
describe variety of types of epidemic spreading. There
two limits in the model: One is weak correlation limit, i.e
a50. In this case, this model degenerates to the site pe
lation in which the occupied fraction corresponds to the
cupied probability@3#. The other one is strong correlatio
limit, i.e., a→`. In this limit case, the Eden cluster can b
obtained withs51, or the Leath percolation cluster wit
s,1.

III. RESULTS AND DISCUSSION

Numerical simulations are performed on a finite system
area ofL3L. The length of square particles is chosen to
the unit of length. The occupied fraction is given byf
5N/L2. In the simulation, the attention is focused on the
particles cluster, i.e., the distribution of S particles.L is cho-
sen to be two values: 200 and 500. The results are almos
same.f is taken as 0.01 in the simulations.

A. Morphology

The morphologies of the numerical simulations vary w
the parameterss anda. Figure 1 shows the simulation pa
terns of epidemic spreading with the pathogenic ratios51
for several correlation exponentsa. In the case of the
weakly correlated percolation i.e.,a is small, allS particles
prefer to be dispersed randomly on the 2D world@see Fig.
1~a!#. It is a site percolation in which occupied the fractio
corresponds to the occupied probability@3#. As a increases,
the correlation between particles gets strong and the part
are not dispersed randomly any more. They are apt to for
dense pattern at some localities@as shown in Fig. 1~b!#. If a
is large enough, the correlation becomes very strong. In
case, we getP51 ~when r 51) and 0 ~when r .1) from
Eqs.~1! and~2!. It means that theS particles can only grow
on the nearest sites to the cluster ofSparticles, which is just
the growth rule of the Eden model@1,2,19,20# Therefore, the
cluster is a very compact one and has a self-affine front@1#
that is a reproduction of the Eden model@see Fig. 1~c!#.
From the above, we generalize a conclusion. For the kind
epidemics that are very easy to spread~e.g., spread by winds!
the disease can be transmitted through long distance, an
distribution of sick individuals is dispersive, which corr

FIG. 1. Distribution of S particles for the percolation model wi
long-range correlations.N52500, s51, a51.5 ~a!, 2.5 ~b!, and
1000 ~c!. L5500 ~a!, 500 ~b!, and 100~c!.
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sponds to the weakly correlated case. But for other kinds
epidemics that are mainly transmitted by contact~e.g., spread
by body fluid, i.e., through sweat, food, sexual contact, a
so on!, the diseases can only spread through a very s
distance from anSsite to an empty one, which is relevant
the strongly correlated case. In this case, the sick parti
are distributed thickly.

Going one step further, we investigated the influence
pathogenic ratios on the distribution of sick and immun
particles. Figure 2 gives the patterns of simulations withs
5pc for varianta. pc is the threshold of 2D percolation o
the square lattice and has the value of 0.593@3#. For smalla,
the system presents a weakly correlated percolation. In
case,SandI particles randomly lie on the 2D lattice@see Fig.
2~a!#, and the distribution ofS particles is similar to that in
Fig. 1~a!. The cluster consisting ofSandI particles becomes
denser as the correlation exponenta rises. The simulation
with s5pc anda52.5 is shown in Fig. 2~b!. The cluster of
Sparticles in Fig. 2~b! is a little sparser than that in Fig. 1~b!
(s51 anda52.5). Figure 2~c! presents the pattern withs
5pc and a51000. Comparing with Fig. 1~c! (s51 anda
51000), the cluster is sparser. In this case, an empty nea
site to the cluster ofS particles is randomly chosen and
converted to anS particle with probabilitys or I one with
(12s), which is the Leath method of generating single p
colation @3#. Such a cluster is just the Leath percolatio
which also has a threshold probabilitypc . If s,pc , the
Leath method can only produce a finite single percolat
cluster@3#. For the strong correlation limit, newS or I par-
ticles grow on the edge of the cluster ofS particles withP
51, and the converted probabilities toSandI particles ares
and 12s, respectively. It follows from this, ifs,pc , the
epidemics cannot spread infinitely for the very strong cor
lation, i.e., the cluster ofSparticles is finite in scale. It can b
seen that the pathogenic ratios plays an important role in the
spreading of diseases.

B. Fractal dimension

The static~geometric! property is expressed by fractal d
mensionD f . The fractal dimension of a spreading perco
tion system can be calculated by the box-counting met
that was used to study random sets in a box by Hambu
et al. recently@20#. It was found, for a low occupied fraction
apparent fractal behavior was observed between physic
relevant cutoffs. The lower cutoffr 0 is presented by the
length of particles. The upper cutoffr 1 is given by the aver-

FIG. 2. Distribution of S and I particles for the percolatio
model with long-range correlations. Full square,S particles; open
square, I particles. s5pc , a51.5, ~a! 2.5 ~b!, and 1000 ~c!.
L5200 ~a!, 200 ~b!, and 100~c!.
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age gap between adjacent particles@20#. The calculations
below were completed by the box-counting method.

Figure 3 plots the fractal dimensionD f of the cluster con-
sisting ofSparticles as functions of the correlation expone
a for pathogenic ratios51 and 0.593, respectively. It i
found that, witha rising from 0 to infinite,D f increases
from 0.72 to 1.93, and a sharp step appears ata'2. We will
show below that the behavior ofD f with a is reasonable.
First, we check the case of the largea. Whena→`, which
corresponds to the limit of strong correlation, ifs51, our
model reduces to the much-studied Eden model in whichD f
is close to 2~2 is the space dimension! @1,2,19#; if s5pc
50.593, our model reduces to the Leath percolation on
thresholdpc in which D f'91/48@3,14#. These results are in
good agreement with our simulation results~1.93 and 1.88!.
Then we discuss the case of smalla. Whena50, our model
reduces to the site percolation whose fractal dimension
related to occupied fractionf @3,20#. Whenf is small,D f is
small too. The simulation value~0.72! is reasonable.

C. Critical behavior in epidemic spreading

As described in Sec. III A, in the case of the strong c
relation limit (a→0), if pathogenic ratios,pc , the epi-
demics cannot spread infinitely, i.e., it is the critical pheno
ena and the thresholdsc5pc . Does thresholdsc exist for
other cases of nonzero variant correlation exponenta?

To answer this question, we consider the epidem
spreading over the range 0<a,`. It is supposed that, if the
growth timeDt of an S particle is longer than 20Dt (Dt is
the mean growth time of previousS particles!, the disease
cannot spread any longer. The supposition is based on
fact that the life-span of viruses and germs are finite.
check the effect ofDt on sc , two simulations with different
Dt (520Dt and 40Dt) have been done. Obtained values
sc are almost the same. This shows that the suppositio
reasonable.

Based on this assumption, the numerical simulations w
performed and the results are shown in Fig. 4. It is fou
that, whena,2, sc is close to 0, and whena is very largesc

FIG. 3. The fractal dimensionD f of the cluster consisting ofS
particles as functions of the correlation exponenta for spreading
percolation. Pathogenic ratios51 ~full square!, and 0.593~open
circle!.
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becomes close topc . There is a sharp step in thesc2a
curve too. The relation ofsc to a is easy to understand. Fo
the limit of strong correlation, our model reduces to Lea
percolation that has a thresholdpc @3#. If s,pc , the cluster
of S particles can only grow to a finite size. Thus, in th
case,sc→pc . For the weak correlation limit, theS particles
can be randomly transmitted through a very long distance
is very difficult to prevent the epidemics from spreading, a
we can expect thatsc→0. Whena changes from 0 to a large
value,sc increases from 0 topc . These expectations agre
well with the results of our simulations. From the above,
different epidemics, the threshold differs greatly for the va
ant spreading ways. For the diseases spreading by to
~strong correlation!, the threshold is large and it is not to
difficult to control the disease spreading. But for the disea
that can be transmitted through long distances~weak corre-
lation!, the spreading phenomena is very difficult to contr

It appears that in Figs. 3 and 4, there is a sharp step a
point ac'2 for D f2a andsc2a curves.ac is the transition
value, which can be deduced using a simple analysis.
consider the growth probabilityPd of S particles at the sites
whose distance from the nearestS particle are larger than a
certain valued. ThenPd can be given by

Pd5(
r 5d

`

sp~r !Y (
r 51

`

sp~r !. ~3!

Using integrals instead of summation approximately, Eq.~3!
becomesPd5(r 22aud

`)/(r 22au1
`). Thus, as a rough estimate

Pd'1 for the rangea,2 and Pd'd22a for the rangea
.2. For the casea52, Pd5 lim

a→2
r 22aud

`/r 22au1
`51. ac

52 is the transition point from a random dispersed distrib
tion to a compact one of particles. The distribution of pa
ticles is reflected by the fractal dimension. So the sharp s
appears ata'2 in the D f2a curve. Analogously, we can
explain the behavior ofsc in Fig. 4. Whena,2, the system
belongs to the universality class of a random graph with
constant probability of a given pair of sites being connect
In this case, theSparticles are dispersed everywhere and
S particles continue to produce newS particles. Thus the

FIG. 4. The thresholdsc of pathogenic ratioversusthe correla-
tion exponent a for spreading percolation.sc'0.593 when
a51000.
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system grows infinitely andsc50. Whena.2, we explain
the same universality class at the square lattice, since m
connections are local. The model can also be performed
d dimension lattice. Similar results can be obtained. M
generally,ac5d.

IV. CONCLUSION

In this paper, a percolation model with long-range cor
lations was introduced to investigate the epidemic spread
by Monte Carlo simulations. Our model gave a variety
patterns that can help us to describe and understand
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different diseases spread. The critical behavior in spread
phenomena was discussed based on the model. It ma
useful to control epidemic spreading and describe sim
spreading phenomena.
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